Body composition
A tool for nutritional assessment

Ingvar Bosaeus
Clinical Nutrition Unit
Sahlgrenska University Hospital

NSKE Oslo 2012-01-18
Outline

- What is body composition?
- What is nutritional assessment?
- Why use body composition?
- Body composition by DXA and impedance
- Clinical body composition - perspectives
What is body composition?

"The study of human body composition can be defined as a branch of human biology which mainly focuses on the *in vivo* quantification of body components, the quantitative relationships between components, and component alterations related to various influencing factors."

Wang, Pierson & Heymsfield 1992
Why use body composition?

- Quantification of body energy stores
- Precise estimation of long-term energy balance
- Analysis of fat depots and skeletal muscle
Energy balance – the fundamental base of nutritional status

Intake
- Protein
- Fat
- CHO

Expenditure
- AEE
- TEF
- REE
Energy balance – so what?

- Positive = weight gain
  - Overweight, obesity and its consequences
- Negative = weight loss
  - Disease-related malnutrition and its consequences

Yes, but we all know that overweight and obesity is the great problem of our time, or...
Annual cost of DRM, obesity and overweight in UK

Changes in fat and fat-free mass = Energy balance

- Fat and fat-free mass have very different energy densities:
  - Fat: 39.4 MJ/kg
  - Fat-free mass: 3.7 MJ/kg
- By e.g. DXA this can be measured with a precision of 1-2%
- This is 3-10 times better than resource demanding reference methods used for estimation of energy balance components

Why not use a scale? Of course:

- It is inexpensive
- It has good precision (about 1%)
- But we can’t tell what is fat or fat-free mass
What kind of differences are we talking about?

- **Weight change:**
  - 5 %/3m (BW 70 kg): 1.2 MJ/d (**280 kcal**)
  - 1 kg/month: 1 MJ/d (**240 kcal**)
  - 1 kg/week: 4 MJ/d (**960 kcal**)

(Assumption: mixed tissue change, 30 MJ/kg [Elia])
Analyzing fat depots

- Mammals have 4 distinct, highly organized fat depots
  - Subcutaneous fat – low inflammatory
  - Visceral (or mesenteric) fat – high infl
  - Ectopic fat (liver, muscle) – very high infl
  - Brown fat - heat generation, low infl

Roth et al Am J Clin Nutr 2011
Body composition rules

The conceptual framework
Body composition – research areas

First area:
Body Composition Rules

Second area:
Body Composition Methodology

Third area:
Body Composition Alterations

Wang ZM 1997
Body composition rules

- The ≈ 40 major components of the human body can be organized into five separate but interconnected body composition levels:
  
  I. Atomic
  II. Molecular
  III. Cellular
  IV. Tissue-System
  V. Whole body

Wang et al 1992
The five-level model

Wang et al 1992
Body mass (weight) is the sum of components at the five levels:

- **Atomic:** $BW = O + C + H + N + Ca + P + S + K + Na + Cl + Mg$
- **Molecular:** $BW = \text{lipids} + \text{water} + \text{protein} + \text{bone mineral} + \text{soft tissue mineral} + \text{glycogen}$
- **Cellular:** $BW = \text{cell mass} + \text{extracellular fluid} + \text{extracellular solids}$
- **Tissue/system:** $BW = \text{adipose tissue} + \text{skeletal muscle} + \text{skeleton} + \text{viscera} + \text{blood} + \text{others}$
- **Whole body:** $BW = \text{head} + \text{neck} + \text{trunk} + \text{lower extremities} + \text{upper extremities}$
Body composition rules

- Each level and its multiple components are distinct, but biochemical and physiological connections exist such that the five levels are consistent and function as an entity.
- In a steady-state of body composition, relatively constant relationships are maintained between components at the same or different levels.
- This provides a matrix for creating explicit body composition equations, and development of multi-compartment methods.
Body composition methodology

Quantifying unknown components
Classification of methodology

Body composition methods

In vitro methods

In vivo methods
Classification of methodology

- The fundamental concepts of *in vivo* body composition methods can be summarized as:

\[ C = f(Q) \]

- where \( C \) = unknown component, \( Q \) is a measurable quantity, and \( f \) is the mathematical function relating \( Q \) with \( C \).
Methodology: \( C = f(Q) \)

- Primarily, the measurable quantity \( Q \) represents a property (e.g. density, electrical impedance, and so on) from which a component of the body can be derived.
- Other components can then be derived, in which \( Q \) is either another measured property or a known component, or both.
- The measurement of a property (or properties) is thus the basis of all methods.
Body composition methods

From theory to practice
The five-level model
Body height and weight

- Body weight (kg)
- Body height (m)
- Body mass index
  $\text{BMI} = \frac{\text{BW}}{\text{BH}^2}$

- Very good precision (≈ 1 %) (outstanding value for money), but unable to quantify lower level components
Obesity definition: WHO

- Obesity is defined as abnormal or excessive fat accumulation that presents a risk to health.
- A crude population measure of obesity is the body mass index (BMI).
- A person with a BMI of 30 or more is generally considered obese.
Obesity: Body weight vs. Body fat

- We define obesity as excess fat and we measure it as excess weight (height-adjusted)

- Does it matter?
On the one hand...

"...most of the variance in obesity-related anthropometrics is captured by BMI."

Bouchard  Int J Obes 2007
“BMI...is only a surrogate measure of body fatness”

“...a wide range of conditions in which surrogate anthropometric measures (especially BMI) provide misleading information about body fat content”.

“...initiate a gradual evolution beyond BMI towards standards based on actual measurements of body fat mass.”

Prentice & Jebb Obes Rev 2001
Conditions with BMI limitations

- infancy and childhood
- ageing
- racial differences
- athletes
- military and civil forces personnel
- weight loss with and without exercise
- physical training
- special clinical circumstances
How measure body fat?

- **Body composition methods:**
  - Accuracy and precision
  - Limitations in body size/weight
  - Feasibility and cost
  - Ability to provide measures of body fat distribution
<table>
<thead>
<tr>
<th>Method</th>
<th>Capability Total fat</th>
<th>Capability Fat distrib.</th>
<th>Applicability large scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>Moderate</td>
<td>Very high</td>
<td>Low</td>
</tr>
<tr>
<td>MRI</td>
<td>High</td>
<td>Very high</td>
<td>Low</td>
</tr>
<tr>
<td>DXA</td>
<td>Very high</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>Densitometry</td>
<td>Very high</td>
<td>Very low</td>
<td>Low</td>
</tr>
<tr>
<td>Dilution</td>
<td>High</td>
<td>Very low</td>
<td>Moderate</td>
</tr>
<tr>
<td>BIA</td>
<td>Moderate</td>
<td>Very low</td>
<td>High</td>
</tr>
<tr>
<td>BMI</td>
<td>Moderate</td>
<td>Very low</td>
<td>Very high</td>
</tr>
<tr>
<td>WC, WHR, SAD</td>
<td>Low</td>
<td>High</td>
<td>Very high</td>
</tr>
<tr>
<td>Skinfolds</td>
<td>Moderate</td>
<td>Moderate</td>
<td>High</td>
</tr>
</tbody>
</table>

Snijder et al Int J Epidemiol 2006
Body composition models

2-Compartment Model
BIA, TBK, TBN, TBW

3-Compartment Model
DEXA

4-Compartment Model

Multicompartment Chemical Model
DXA
Dual-energy X-ray Absorptiometry
DXA
Dual-energy X-ray Absorptiometry
Which method should I use?

The answer is (perhaps annoying) a number of questions:
- What do you want to measure?
- In what context?
- What is your budget?
- What is an acceptable burden on the subject?
  – And so on...
Malnutrition is common, under-recognised and under-treated

"- The number of undernourished hospital patients in Europe is unacceptable."
"- Undernutrition among hospital patients leads to extended hospital stays, prolonged rehabilitation, diminished quality of life and unnecessary costs."

Council of Europe, Resolution ResAP(2003)3
Development of undernutrition

- Medical factors
- Social factors
- Environmental factors

Intake below requirements → Depletion of body stores → Biochemical changes → Anatomical and functional changes
Development of disease-related malnutrition: The two pathways

Anorexia → Low intake

Disease

Catabolism

Tissue wasting
Development of disease-related malnutrition: The two pathways

- Anorexia → Low intake
- Disease
- Inflammation
- Catabolism
- Tissue wasting
Development of disease-related malnutrition: The two pathways

- Disease
- Anorexia → Low intake
- Inflammation
- Catabolism
- Tissue wasting
The pathways to weight loss

- Low intake
- Disease
- Catabolism
- Weight loss
How do the pathways differ?

Low intake = Negative energy balance

Fat stores depleted more than muscle

Cancer cachexia with systemic inflammation

Muscle breakdown and fat depletion
Nutritional support in inflammation: Limited effect – one pathway

Fat stores repleted

but

Muscle breakdown continues driven by systemic inflammation

Skeletal muscle loss

Preservation of viscera
Clinical body composition

- All (almost) body composition methods estimate fat and fat-free mass.
- In wasting disease, muscle should be separated out from fat-free mass.
How measure muscle mass?

- CT / MRI
- DXA
- Bioimpedance (?)
- Anthropometry?

- Many functional tests in use
Skeletal muscle mass – reference method CT/MRI

Muscle tissue volume determination by whole-body imaging
Muscle by single slice CT/MR

CT image obtained for clinical purposes

Detection of specific tissues

- Subcutaneous fat
- Muscle
- Intramuscular fat
- Visceral fat

Baracos et al JPEN 2012
Muscle mass by DXA

Appendicular lean soft tissue (ALST) = Lean soft tissue (LST) in arms + legs

Skeletal muscle mass (SM, kg):
1.19 x ALST – 1.65
$R^2 = 0.96$ SEE = 1.46 kg
(Kim et al JAP 97:655, 2004)

Adjusting for height:
SM index = SM / height$^2$ (kg/m$^2$)
ALST index = ALST / height$^2$ (kg/m$^2$)
Muscle by bioimpedance?

Theoretically sound – impedance measures mainly arms and legs

Segmental measurements possible

In need of further development and validation to become routine
BIS in elderly

- BIS can accurately estimate body fat and fat-free mass in 75-year old Swedes.
- Muscle mass can also be accurately estimated compared to DXA, population-specific equations are required.
- Our data could be used as reference for elderly patient populations.

Ref: Tengvall M, Ellegård L, Malmros V, Bosaeus N, Lissner L, Bosaeus I. 
Body composition in the elderly: reference values and bioelectrical impedance spectroscopy to predict total body skeletal muscle mass. 
Clin Nutr 2009 (28): 52-58
Bioelectric impedance analysis

Area $A$

Volume $V$

Length $L$

$A = \frac{V}{L}$

$R = \frac{\rho L}{A}$

$R = \frac{\rho L^2}{V}$

$V = \frac{\rho L^2}{R}$
BIA - Conclusions I

- BIA provides a reliable estimate of total body water under most conditions

- It can be a useful technique for body composition analysis in healthy individuals

- It can be used in medical conditions where major disturbances of water distribution is not prominent

NIH Technology Assessment Conference 1994
BIA - Conclusions II

- BIA values are affected by numerous variables, including:
  - Body position
  - Hydration status
  - Consumption of food and beverages
  - Ambient air and skin temperature
  - Recent physical activity
  - Conductance of the examining table

NIH Technology Assessment Conference 1994
BIA - Conclusions III

- Reliable BIA requires standardization
- A specific, well-defined procedure is not practiced.
- Instrument standards and procedural methods should be standardized

NIH Technology Assessment Conference 1994
Electrical properties of tissues are frequency-dependent.

Information about body composition can be obtained through Bioimpedance spectroscopy (BIS). BIA ≠ BIS.

Measurement range BIS:
- \( R_{\inf} \)
- \( R_0 \)
- 5kHz
- 1MHz
- BIA (50 kHz)

Physiological Impedance curve:
- \( R_{\text{TBW}} \)
- \( R_{\text{ECW}} \)

Bioimpedance spectroscopy (BIS) can measure the physiologic impedance curve.
Bioimpedance: Cole modelling

Impedance Locus
Bioimpedance: Cole modelling

\[ R_0 = R_e \quad \frac{1}{R_\infty} = \frac{1}{R_e} + \frac{1}{R_i} \]
BIS volume equations

\[
ECW_{\text{BIS}}(l) = 0.01 \times \left( \frac{K^2_B \times \rho ECW^2 \div D_B}{R_e} \right)^{1/3} \times \left( Ht^2 \times \sqrt{BW} \div R_e \right)^{2/3}
\]

\[
ICW_{\text{BIS}}(l) = ECW_{\text{BIS}} \times \left\{ \frac{[\rho \, TBW \times (R_e + R_i) \div (\rho \, ECW \times R_i)]^{2/3} - 1}{\rho \, ECW} \right\}
\]

\[
TBW_{\text{BIS}}(l) = ECW_{\text{BIS}} + ICW_{\text{BIS}}.
\]

Tengvall et al Physiol Meas 2010;31:59-71
Bioimpedance spectroscopy

**BIS – measurement principle**

**Low frequency**
- (current does not penetrate the cell)

**Middle frequency**
- (50 kHz)
  - (current partially penetrates the cells)

**High frequency**
- (current flows through the cells)

www bcm-fresenius.com
From impedance to body composition

Reactance

1MHz

5kHz

Weight, height → Fluid Model

- ECW, ICW

- Overhydration
- Lean Tissue
- Fat

Body Comp

www.bcm-fresenius.com
How does it work in practice?

- Healthy subject
- Overhydrated patient
- Patient with malnutrition

www bcm-fresenius.com
Bioimpedance: Different methods

- **Single frequency BIA:** FFM and TBW
  - Difficult separating ICW and ECW, unsuitable in altered hydration states.

- **Multi-frequency BIA:** FFM, TBW, ICW and ECW from regression equations

- **Bioelectrical spectroscopy (BIS):** FFM, TBW, ICW and ECW from mathematical modeling of multiple frequencies
And now... the problems:

- An increasing number of studies show that BIS can, fairly accurate, measure water compartments in some, but not all patient groups.

- However, most studies find a considerable variation in individuals, raising concerns about clinical usefulness.
Bioimpedance methods

- Model assumptions – big problem!
- Measurement errors – yes and no
- Validation in study populations – reasonable in some applications
- Feasibility – very good!
Bioimpedance - model assumptions 1

- Five-cylinder body model – far from perfect!
- "Shape factor" in BIS calculations
- Resistivity constants – constant or variable?
- Body height as proxy for distance between electrodes
Bioimpedance – measurement errors 2

- Electrical measurement quite accurate (~1%)
- Reactance component more dependent on good quality instruments than resistance
- High frequencies more prone to errors – stray capacitance e.g. between electrodes, electrode leads or skin-electrode interface
Some patients are more difficult to measure by BIS...
Generally “easier” to measure ECW than ICW by BIS in “problem subjects”

The Td (time delay) correction method widely used may yield incorrect results in some cases

To be useful as a tool in clinical practice, these limitations should be recognized
Malnutrition & disease

Step 1: To recognize the problem

Screening:
1. Weight loss
2. Eating problems
3. Underweight

Result:
At risk /not at risk for malnutrition
Malnutrition & disease

Step 2: Assessment

At risk for malnutrition

Assessment of:
Energy stores (fat)
Fat free mass

Diagnosis based on body composition
Step 3: Diagnosis (2c BC model)

<table>
<thead>
<tr>
<th>Fat free mass</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Malnutrition Cachexia</td>
</tr>
<tr>
<td>±</td>
<td>Lean</td>
</tr>
<tr>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
Which cut-off values should we use?

- Fat and fat free mass should be related to body size
- Let us do it in the same way as for body weight (that is, BMI)
- Fat-free mass index, FFMI = FFM/height^2
- Fat mass index, FMI = Body fat/height^2
- FFMI + FMI = BMI
Which cut-off values? **Males:**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low FFMI</td>
<td>&lt; 16,7</td>
</tr>
<tr>
<td>Normal FFMI</td>
<td>16,7 – 19,8</td>
</tr>
<tr>
<td>High FFMI</td>
<td>&gt; 19,8</td>
</tr>
<tr>
<td>Low FMI</td>
<td>&lt; 1,8</td>
</tr>
<tr>
<td>Normal FMI</td>
<td>1,8 – 8,3</td>
</tr>
<tr>
<td>High FMI</td>
<td>&gt; 8,3</td>
</tr>
</tbody>
</table>

Which cut-off values? **Females:**

<table>
<thead>
<tr>
<th>Low FFMI</th>
<th>&lt; 14.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal FFMI</td>
<td>14.6 – 16.8</td>
</tr>
<tr>
<td>High FFMI</td>
<td>&gt; 16.8</td>
</tr>
<tr>
<td>Low FMI</td>
<td>&lt; 3.9</td>
</tr>
<tr>
<td>Normal FMI</td>
<td>3.9 – 11.8</td>
</tr>
<tr>
<td>High FMI</td>
<td>&gt; 11.8</td>
</tr>
</tbody>
</table>

## Nutritional Diagnosis Males:

<table>
<thead>
<tr>
<th>Fat-free mass index</th>
<th>Fat mass index</th>
<th>Lean</th>
<th>Normal</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt;= 16.7</td>
<td>&lt; 1.8</td>
<td>Lean</td>
<td>Normal</td>
<td>Obese</td>
</tr>
<tr>
<td></td>
<td>1.8–8.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; 16.7</td>
<td>Malnutrition (Cachexia)</td>
<td>Malnutrition (Sarcopenia)</td>
<td>Malnutrition (Sarcopenic obesity)</td>
<td></td>
</tr>
<tr>
<td>Fat mass index</td>
<td>&gt;= 14,6</td>
<td>&lt; 14,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;= 14,6</td>
<td>Lean</td>
<td>Malnutrition (Cachexia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;= 3,9</td>
<td>Normal</td>
<td>Malnutrition (Sarcopenia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt; 3,9 – 11,8</td>
<td></td>
<td>Malnutrition (Sarcopenic obesity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt; 11,8</td>
<td>Obese</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Swedish guidelines disease-related malnutrition

2000

2011
Undernutrition – diagnostic criteria

• **Weight loss > 10 %** and at least one of the following:
  • BMI <19 if <70 y, <21 kg/m² if >70 y, or
  • Fat free mass index (FFMI) <15 kg/m² (women), <17 kg/m² (men), or
  • Fat mass index (FMI) <4 kg/m² (women), <2 kg/m² (men), or
  • Gait speed <1 m/s, or low hand grip strength (by validated method related to relevant reference population)

SWESPEN & Swedish National Board of Health and Welfare 2011
Summary

• Current nutritional assessment is generally based on body weight (and its change)
• Improved nutritional assessment requires diagnostics based on body composition
• Standard methods using body fat and fat-free mass are still to be implemented
• Future applications will likely also use muscle mass determinations
Thanks for your attention!

ingvar.bosaeus@nutrition.gu.se